Finding the primal Solution By using the Vogel's approximation Method in transportation problem

AHMED HUSHAM MOHAMMED ALBASRI STATISTICS DEPARTEMENT ADMINISTRATION AND ECONOMICS COLLEGE UNIVERSITY OF BASRAH Ahmed.albasrai@uobasrah.edu.iq

The Vogel's approximation Method (VAM) is most common method used to determine efficient initial solutions for solving the transportation .

For]	Example t	he explaining	steps by	taking the	initial	solution for	r VAM
-------	-----------	---------------	----------	------------	---------	--------------	-------

			Storage locations							
turi ons	X1	20	22	17	4	120				
nufact locati	X2	24	37	9	7	70				
Maı ng]	X3	32	37	20	15	50				
Demand		60	40	30	110					

The steps calculated the initial solution for the VAM :

1- Calculating the difference between the lowest cost for each row and column of the cost-matrix. - Calculating the difference between the Rows

Stop 1	77		Storage	locations		supply	D.B.L.
Step I	"	Y1	Y2	Y3	Y4	suppry	Row
turi ons	X1	20	22	17	4	120	13
nufac locati	X2	24	37	9	7	70	2
Mai ng	X3	32	37	20	15	50	5
Demand		60	40	30		100	
DBL Colum	n						

- Calculating the difference between the columns

Stop 1			Storage 1	supply	D.B.L.		
Step 1		Y1	Y2	Y3	Y4	suppry	Row
turi ons	X1	20	22	17	4	120	
nufac locati	X2	24	37	9	7	70	
Maing	X3	32	37	20	15	50	
Demand		60	40	30	110		
DBL Column		4	15	8	3		

Stop 1			Storage 2	supply	D.B.L.		
Step 1		Y1	Y2	Y3	Y4	suppry	Row
turi ons	X1	20	22	17	4	120	13
nufact locati	X2	24	37	9	7	70	2
Maı ng]	X3	32	37	20	15	50	5
Demand		60	40	30	110	240 240	
DBL Column		4	15	8	3		

2- then assigning the maximum number of units possible to the least-cost cell in the row or column with the largest penalty.

Stop 2			Storage	supply	D.B.L.		
Step 2		Y1Y2		Y3	Y4		Row
turi ons	X1	20	40 22	17	4	⁸⁰ 120	13
nufac locati	X2	24	37	9	7	70	2
Mai ng	X3	32	37	20	15	50	5
Demand	1	60	⁰ 40	30	110	240 240	
DBL Colum	n	4	15	-8	3		

- selected the maximum number in column (Y2) is (15).
- selected the minimum cost in the column (Y2) is (22).
- Fill the cell (X1Y2) with storage capacity that equal (40).
- Hidden the (Y2) about the solution .
- **3-** <u>Repeated the step 1 by carelessly the column (Y2)</u>

Sten 3		Matter	Storage 2	locations	c5 🖓	supply	D.B.L.
Step 5		Y1	Y2	Y3	Y4		Row
turi ons	X1	20	40 22	17	80 4	⁰ 120	13
nufac	X2	24	37	9	7	70	2
Man	X3	32	37	20	15	50	5
Demand		60	⁰ 40	30	110	240 240	
DBL Column		4		8	3		

- selected the maximum number in row (X1) is (13).
- selected the minimum cost in the row (X1) is (4).
- Fill the cell (X1Y4) with storage capacity that equal (80).
- Hidden the (X1) about the solution .

Stop 4	•		Storage	locations		supply	DBL
Step 4		Y1	Y2	Y3	Y4		Row
iring IS	X1	20	40 22	17	80 4	0 120	
ufactu	X2	24	37	30 9	7	⁴⁰ 70	2
Man Ic	X3	32	37	20	15	50	5
Demand		60	<mark>0</mark> 40	0 30	³⁰ 110	240 240	
DBL Column		8		11	8		

4- Repeated the step 1 by carelessly the column (Y2) and Row (X1)

- selected the maximum number in column (Y3) is (11) .
- selected the minimum cost in the column (Y3) is (9) .
- Fill the cell (X2Y3) with storage capacity that equal (30).
- Hidden the (Y3) about the solution .
- 5- Repeated the step 1 by carelessly the columns (Y2, Y3) and Row (X1)

Stop 5	1		Storage	locations	1.00	supply	DBL
Step 5	7.	Y1 Y2		Y3	Y4		Row
iring Is	X1	20	40 22	17	80 4	0 120	
ufactu ocatior	X2	24	37	30 9	30 7	¹⁰ 70	17
Man Ic	X3	32	37	20	15	50	17
Demand	Ζ	60	0 40	0 30	0 110	240 240	
DBL Colum	n	8			8		
			1.5	1 3			

- Can see the difference between lowest that equals in rows and columns .
- The choice is made in such a case by adopting the least cost among the remaining costs is (7) .
- Fill the cell (X2Y4) with storage capacity that equal (30).

Step 6			Storage locations							supply	DBL
			Y1		Y2		Y3		Y4		Row
uring IS	X1		20	40	22		17	80	4	0 120	
ufactu catior	X2	10	24		37	30	9	30	7	0 70	
Man lo	X3	50	32		37		20		15	0 50	
Demand		0	.60	0	40	0	30	0	110	240 240	
DBL Colum	n										

- Fill the cells (X2Y1) with storage capacity that equal (10).

- Fill the cells (X3Y1) with storage capacity that equal (50).

The initial Salutation for the Transportation Problem by VAM

Step 6			Storage	locations		supply
		Y1	Y2	Y3	Y4	suppry
uring IS	X1	20	40 22	17	80 4	120
ufactu cation	X2	10 24	37	30 9	30 7	70
Man Ic	X3	50 <u>32</u>	37	20	15	50
Demand		60	40	30	110	240 240

THE TOTAL COST FOR BROBLEM

THE TOTAL COST FOR BROBLEM										
Supply	Demand	X _{ij}	$\mathbf{C}_{\mathbf{ij}}$	The cost per unit of each Manufacturing						
X1	Y2	40	22	880						
X1	Y4	80	4	320						
X2	Y1	10	24	240						
X2	Y3	30	9	270						
X2	Y4	30	7	210						
X3	Y1	50	32	1600						
TOTAL COST FO	R TRANSPORTATI	ON PROBLEM		3520						

Tohinistration & Economics Collect
